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Abstract
A theory of magneto-oscillations of kinetic coefficients is developed for two-
dimensional structures with several occupied size-quantized subbands. The
Green function of a multilevel system is calculated, making allowance for
intersubband scattering in moderate magnetic fields at both zero and non-zero
temperatures. The temperature dependence of the Shubnikov–de Haas effect
is investigated. It is shown that oscillations with frequency proportional to the
concentration in the upper subband appear even if occupation of this subband is
low. For the first time, the amplitude of the conductivity magneto-oscillations
that are not thermally damped out is calculated. It is shown that they have
frequencies proportional to the differences of the energies of size-quantization.
It is predicted that there will be emergence and disappearance of beats in the
magnetoconductivity at relatively small occupation of the upper subband.

1. Introduction

Thermodynamic and kinetic coefficients like the heat capacity, magnetic susceptibility,
conductivity, thermal conductivity, and ultrasonic absorption are well known to oscillate in
a magnetic field in structures with a degenerate electron gas at low temperatures. A common
reason for all of these effects is the consecutive crossing of the Fermi level by Landau levels
in a quantized magnetic field. The frequency of the oscillations in a reciprocal magnetic field
is proportional to the Fermi energy.

The magnetic field regions in which these oscillations are observed differ strongly between
the two-dimensional (2D) and 3D cases. In the bulk, the oscillations appear in a ‘classically
strong’ magnetic field, when ωcτ � 1. Here, ωc is the cyclotron frequency and τ is the carrier
relaxation time. In contrast, in 2D structures, this effect appears in a moderate magnetic field,
when the change of the density of states due to the magnetic field is small [1, 2]. This takes
place when exp(−π/ωcτ) � 1, i.e. at ωcτ � 1. Therefore in contrast to the bulk case, where
the oscillations contain some multiple of the main harmonic, the rigorous theoretical treatment
gives oscillations with only one frequency for ultraquantum 2D systems. The corresponding
theory was developed in reference [1].
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A qualitatively new situation arises in quasi-two-dimensional (quasi-2D) structures, where
two or several size-quantized subbands are occupied. In this case, each subband may give rise
to an oscillation with its own period. The oscillation amplitudes are determined by the total
scattering probability including intersubband transitions.

The temperature behaviour of the oscillation effects in quasi-2D systems is also
unexpected. At one-subband occupation, the oscillations damp out with temperature because
of the carrier distribution broadening. If two or more subbands are occupied, the oscillations
appear at differential frequencies which are proportional to the energy distances between the
size-quantized levels. These are harmonics, which are conserved as temperature increases [3].

The resistivity oscillations in a magnetic field—the Shubnikov–de Haas effect—were
observed experimentally in quasi-2D systems in references [4–6]. The case of two subbands
was studied theoretically in references [4, 7]. However, the oscillation terms were taken
into account inconsistently, and, for this reason, the analysis of the experimental data [4, 5]
was carried out incorrectly. In reference [7], only one conductivity tensor component was
considered and its temperature dependence was calculated inexactly.

Oscillations with several periods were observed in multivalley bulk semiconductors for
intense intervalley scattering [8, 9]. However, it is impossible to apply these results to quasi-
2D systems because the parameter ωcτ is not large, in contrast to the 3D case. For the same
reason, the density matrix method used for the 3D case fails. Instead, we will apply the Green
function method.

The Green function of a quasi-2D system in a quantized magnetic field will be obtained
at zero and non-zero temperatures. With its help, we will study the conductivity oscillations
in a magnetic field. The aim of this paper is to calculate the magnetoconductivity tensor for
a quasi-2D electron system at non-zero temperature. The theory will be developed for an
arbitrary number of size-quantized subbands, and the case of two subbands will be considered
in detail. Spin effects will be neglected for simplicity.

In real 2D structures, scattering may be governed by different factors. The scattering from
remote impurities may be most important, or the scattering from interface roughness may be
dominant, or, at a slightly higher temperature, the scattering from acoustic phonons may play
the crucial role [10]. However, in the present paper we consider a multisubband system and
investigate the effect of intersubband scattering on the transport properties of such a system.
Under transitions from one subband to another, a large momentum having the order of the
Fermi momentum is transferred to the scatterers. Hence the characteristic scattering length
has to be of the order of the Fermi wavelength, i.e. the scattering potential has to be short
range [7, 11]. This case is considered in this paper.

The paper is organized as follows. In section 2, the system of Dyson equations is solved
and the Green functions are obtained at zero and non-zero temperatures. In section 3, the
magnetoconductivity tensor is calculated for a quasi-2D system. In section 4, we consider
the magnetoresistance for the case of two filled subbands in detail and perform a qualitative
comparison with the available experimental data. In the concluding section, the main results
of the paper are presented. In the appendices, some details of the calculations are given.

2. The Green function of a quasi-2D system in a magnetic field

2.1. Zero temperature

In the general case, the Green function of non-interacting electrons in a magnetic field at zero
temperature may be presented as follows:
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Gε(r, r
′) =

∑
j,j ′

∑
n,ky

Gjj ′(ε; n, ky)ψjnky (r)ψ
∗
j ′nky (r

′). (1)

Here ψjnky (r) are the electron wavefunctions in a heterostructure under a perpendicular
magnetic field in the Landau gauge, j and j ′ are numbers labelling size-quantized subbands,
n and ky are numbers labelling Landau levels and values of wavevectors in the plane of a
heterostructure, respectively.

We assume that there are many Landau levels under the chemical potential in each subband:

µj/h̄ωc � 1 (2)

and that the condition for a ‘good conductor’ is fulfilled for all subbands:

µjτj/h̄ � 1. (3)

Here µj is the energy distance between the chemical potential and the bottom of the j th
subband at zero field, and τj is the relaxation time of carriers in the j th subband.

The coefficients Gjj ′(ε; n, ky) are determined from the system of M2 Dyson equations,
where M is the number of filled subbands. We assume the energy distances between subbands
to be large:

|µj − µj ′ | � h̄/τj . (4)

Hence the non-diagonal coefficients, Gjj ′ , are much smaller than the diagonal ones:

Gε(r, r
′) =

M∑
j=1

∑
nky

Gj (ε; n, ky)ψjnky (r)ψ
∗
jnky

(r′). (5)

We consider that scattering takes place from a number of randomly distributed short-range
potentials. In this approximation the self-energy parts are independent of the Landau-level
index, n. This has been demonstrated for a 3D system [12], for a 2D system with one occupied
subband [13], and, similarly, for a two-subband system [7]. Therefore the coefficients Gj

in (5) have the following form:

Gj(ε, ξj,n) = [ε − ξj,n − Xj(ε)]
−1 (6)

where ξj,n is the energy distance between Landau level n in the j th subband and the chemical
potential:

ξj,n = h̄ωc(n + 1/2) − µj . (7)

The self-energy parts, Xj , are determined in the framework of the self-consistent Born
approximation from the system of equations

Xj(ε) = h̄ωc

π

∑
n

M∑
j ′=1

h̄

2τjj ′
Gj ′(ε, ξj ′,n). (8)

This system (8) was obtained in reference [7] for two-subband filling. Here τjj and τjj ′ (j 	= j ′)
are the intrasubband and intersubband scattering times at zero magnetic field, respectively.
Note that the scattering time τjj ′ for the intersubband transition from the j th to the j ′th
subband coincides with the time for the reciprocal process, τj ′j , due the effective masses being
the same in all subbands. The total relaxation times in subbands in the absence of a magnetic
field, τj , are given by

1

τj
=

M∑
j ′=1

1

τjj ′
. (9)
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In the presence of a quantized magnetic field the relaxation times depend on the field. They are
defined by the imaginary parts of the self-energy Xj(ε) and can be obtained from the equation
system (8). In order to solve this system one uses the Poisson summation formula

∞∑
n=0

f (n) =
∞∑

k=−∞

∫ ∞

0
dn exp (2π ikn)f (n) +

f (0)

2
. (10)

Since below we have to treat Green functions at |ε| � µj , we neglect the last term in (10) and
obtain

Xj(ε) =
M∑

j ′=1

h̄

2πτjj ′

∞∑
k=−∞

∫ ∞

−µj ′
dξ

{
exp

[
2π ik

(
µj ′ + ξ

h̄ωc

− 1

2

)]}/
(ε − ξ − Xj ′(ε)). (11)

When k 	= 0, the range |ξ | � µj gives the main contribution to these integrals. Hence they
may be taken along the whole real axis and one may use the residue theorem. The integration
path has to be closed in the upper half-plane of the complex variable ξ for k > 0 and in the
lower one for k < 0. When the equations (2) and (3) are satisfied, the integrals for k = 0 do
not depend on h̄ωc. They determine the Green function in the absence of a magnetic field.
The imaginary parts of these integrals are calculated similarly to the ones for k 	= 0. The real
parts, diverging at ξ → ∞, determine the value of the chemical potential and can be assumed
to be included into µj . Thus after integrating we obtain

Xj(ε) =
M∑

j ′=1

ih̄

2τjj ′
sign[ImXj ′(ε)]

×
{

1 + 2
∞∑
k=1

exp

[
−2π ik

(
µj ′ + ε − Xj ′(ε)

h̄ωc

− 1

2

)
sign[ImXj ′(ε)]

]}
. (12)

The signs of the imaginary parts, sign[ImXj(ε)], can be obtained from the limiting case
τjj ′ → ∞ in zero magnetic field like for the 3D system [14]. In the weak-scattering limit,
Xj(ε) → −i0 sign ε. So we derive finally

Xj(ε) = −
M∑

j ′=1

ih̄

2τjj ′

{
1 + 2

∞∑
k=1

exp[2π ikFj ′(ε)]

}
sign ε (13)

where

Fj (ε) =
[
µj + ε − Xj(ε)

h̄ωc

− 1

2

]
sign ε. (14)

It is seen from (13), (14) that at zero magnetic field

Xj(ε) = − ih̄

2τj
sign ε. (15)

In first order in the parameters exp(−π/ωcτj ), the solution of the system (13) has the form

Xj(ε) = −
M∑

j ′=1

ih̄

2τjj ′

{
1 + 2 exp (−π/ωcτj ′) exp

[
2π i

(
µj ′ + ε

h̄ωc

− 1

2

)
sign ε

]}
sign ε. (16)

One can see that the self-energy parts oscillate in a magnetic field. Equation (16) shows that
the intersubband scattering rates become different from 1/τjj ′ in the presence of a magnetic
field due to small magneto-oscillations of the density of states in the j ′th subband. For the
same reason the scattering rate for the intersubband transition from the j th to the j ′th subband
differs from that for the reciprocal process.
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Depending on sign ε, the Green function is analytical in the upper or lower half-planes
of the complex variable ε. For this reason, one uses conveniently the advanced, GA

j , and the
retarded, GR

j , Green functions as in the absence of a magnetic field:

Gj(ε, ξ) =
{
GR

j (ε, ξ) ε > 0

GA
j (ε, ξ) ε < 0 .

(17)

2.2. Finite temperature

To calculate the Green function and the conductivity tensor at non-zero temperature we will
use the Matsubara technique. It is more convenient than the Keldysh technique because it
allows one to obtain expressions for all components of the conductivity tensor in the same
manner.

We go from a continuous variable, ε, to a discrete energy, iεm:

εm = πT (2m + 1) (18)

where T is a temperature expressed in energy units andm is an integer. The temperature Green
function has the form

Gj (εm, ξj,n) = [iεm − ξj,n − Xj (εm)]
−1. (19)

The self-energy parts, Xj (εm), satisfy a system of equations similar to (13):

Xj (εm) = −
M∑

j ′=1

ih̄

2τjj ′

{
1 + 2

∞∑
k=1

exp[2π ik�j ′(εm)]

}
signm (20)

where

�j(εm) =
[
µj − Xj (εm)

h̄ωc

− 1

2

]
signm +

i|εm|
h̄ωc

. (21)

To study the temperature behaviour of the conductivity, one has to obtain the values Xj (εm)

in second order in exp(−π/ωcτj ). With this accuracy, the solution of the system (20) takes
the form

Xj (εm) = −
M∑

j ′=1

ih̄

2τjj ′

{
1 + 2e−π/ωcτj ′ exp

[
2π i

(
µj ′

h̄ωc

− 1

2

)
signm

]
e−2π |εm|/h̄ωc

+

(
1 − 2π

ωcτj ′

)
2e−2π/ωcτj ′ exp

[
4π i

(
µj ′

h̄ωc

− 1

2

)
signm

]
e−4π |εm|/h̄ωc

}
signm.

(22)

3. Conductivity tensor calculation

3.1. Conductivity at zero temperature

To calculate the conductivity tensor at T = 0, we will use the relationship (see appendix A)
for an electric field frequency ω > 0:

σαβ(ω) = 1

ω

∫ ∫
dr dr′

∫ ∞

−∞

dε

2π
[Ĵα(r)Gε+h̄ω(r, r

′)][Ĵβ(r′)Gε(r
′, r)] +

iNe2

mω
δα,β (23)

where the current-density operator has the form

Ĵ(r) = e

m

[
−ih̄∇ − e

c
A(r)

]
. (24)
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Here A(r) is the vector potential of the constant magnetic field applied perpendicular to the
electron gas plane, N is the total 2D electron concentration, c is the velocity of light, e and m

are the electron charge and effective mass respectively, δα,β is the Kroneker symbol, α and β

are Cartesian coordinates.
Below we will investigate the static conductivity and therefore consider the frequency

ω as a small value and reduce it to zero in the final expressions. As the components of the
conductivity tensor σxx and σxy are real at ω = 0, one may calculate the value

σ = σxx + iσxy.

Using the expression (5), calculating matrix elements of the current-density operator

〈j ′n′k′
y |Ĵx |jnky〉 = −ie

√
h̄ωc

2m
(
√
nδn′,n−1 −

√
n + 1δn′,n+1)δky,k′

y
δj,j ′

〈j ′n′k′
y |Ĵy |jnky〉 = −e

√
h̄ωc

2m
(
√
nδn′,n−1 +

√
n + 1δn′,n+1)δky,k′

y
δj,j ′

(25)

and taking into account degeneracy of a Landau level:∑
ky

= mωc

2πh̄

we obtain

σ(ω) = e2ω2
c

2πω

M∑
j=1

∞∑
n=0

∫ ∞

−∞

dε

2π
nGj(ε + h̄ω, ξj,n)Gj (ε, ξj,n−1) +

iNe2

mω
. (26)

Equation (26) shows that all subbands give quasi-independent contributions to the conductivity.
The probability of intersubband scattering enters into the values Xj only.

Applying the Poisson summation formula (10) and expressing Gj(ε, ξ) through the
advanced and retarded Green functions (17), we get

σ(ω) = iNe2

mω
+

e2

2πh̄2ω

M∑
j=1

∞∑
k=−∞

∫ ∞

−µj

dξ

(
µj − h̄ωc

2
+ ξ

)
exp

[
2π ik

(
µj + ξ

h̄ωc

− 1

2

)]

×
[∫ −h̄ω

−∞

dε

2π
GA

j (ε + h̄ω, ξ)GA
j (ε, ξ − h̄ωc) (27a)

+
∫ 0

−h̄ω

dε

2π
GR

j (ε + h̄ω, ξ)GA
j (ε, ξ − h̄ωc) (27b)

+
∫ ∞

0

dε

2π
GR

j (ε + h̄ω, ξ)GR
j (ε, ξ − h̄ωc)

]
. (27c)

Let us consider these calculations in detail. The terms in (27a) and (27c) with k = 0 give
the magnetic field-independent contribution (see appendix B)

e2

2π ih̄2ω

M∑
j=1

µj

which cancels the ‘gauge’ part iNe2/mω. This results from the absence of change of the
carrier concentration in a magnetic field at the fixed chemical potential (see appendix C):

N =
M∑
j=1

Nj = m

2πh̄2

M∑
j=1

µj . (28)
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Clearly, if the 2D concentration is fixed, then the chemical potential does not oscillate in a
magnetic field either.

The rest of the terms in (27a) and (27c) and all of the terms in (27b) are determined by
the range |ξ | � µj . For this reason, the integration over ξ may be extended over the whole
real axis and one can use the residue theorem. As the result we have

σ(ω) = ie2

2πh̄2ω

M∑
j=1

{∫ −h̄ω

−∞
dε

(
µj + ε

h̄ωc

) ∞∑
k=1

[e2π ikFj (ε+h̄ω) − e2π ikFj (ε)]

−
∫ 0

−h̄ω

dε
µj

h̄ωc + Xj(ε + h̄ω) − Xj(ε)

[
1 +

∞∑
k=1

(e2π ikFj (ε+h̄ω) − e2π ikFj (ε))

]

−
∫ ∞

0
dε

(
µj + ε

h̄ωc

) ∞∑
k=1

[e2π ikFj (ε+h̄ω) − e2π ikFj (ε)]

}
. (29)

In the second group of the integrals, we have taken it into account that the functions Xj(ε)

have breaks equal to ih̄/τj at ε = 0, and that therefore the differences Xj(ε + h̄ω) − Xj(ε)

are comparable with h̄ωc. It should be noted that at ω → 0 the first and the third group of the
integrals are imaginary, i.e. contribute to σxy only. They are equal to zero in the absence of a
magnetic field.

Equation (29) determines the conductivity in all orders in exp(−π/ωcτj ). Substituting the
self-energy parts (16) into (29), retaining the first-order terms in exp(−π/ωcτj ), and passing
to the limit ω → 0, we get

σxx =
M∑
j=1

Nje
2τj /m

1 + (ωcτj )2

{
1 +

2(ωcτj )
2

1 + (ωcτj )2
δj +

∑
j ′ 	=j

τj

τjj ′

1 − (ωcτj )
2

1 + (ωcτj )2
(δj − δj ′)

}
(30)

σxy = −
M∑
j=1

Nje
2τ 2

j ωc/m

1 + (ωcτj )2

{
1 − 1 + 3(ωcτj )

2

(ωcτj )2[1 + (ωcτj )2]
δj +

∑
j ′ 	=j

τj

τjj ′

2

1 + (ωcτj )2
(δj − δj ′)

}

(31)

where

δj = 2 cos

(
2π

µj

h̄ωc

+ π

)
exp

(
− π

ωcτj

)
. (32)

Calculating the first integral group in (29), we put

lim
ε→∞ exp (2π iε/h̄ωc)

equal to zero. This is true at any finite temperature, when iε is replaced by −|εm| and m → ∞.
Clearly, having calculated this limit, one can come back to zero temperature.

Equations (30)–(32) describe the conductivity of a quasi-2D system at zero temperature.

3.2. Conductivity at finite temperatures

At non-zero temperature, in the framework of the Matsubara technique, the conductivity is
found at an imaginary frequency [14], iωl , where l is an integer and

h̄ωl = 2πT l.

Making in (29) the replacements

ω → iωl ε → iεm X(ε) → X (εm)

∫
dε → 2π iT

∑
εm

(33)
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we derive

σ(iωl) = ie2T

h̄2ωl

M∑
j=1

{ −l−1∑
m=−∞

(
µj + iεm
h̄ωc

) ∞∑
k=1

[e2π ik�j (εm+l ) − e2π ik�j (εm)]

−
−1∑

m=−l

µj

h̄ωc + Xj (εm+l) − Xj (εm)

[
1 +

∞∑
k=1

(e2π ik�j (εm+l ) − e2π ik�j (εm))

]

−
∞∑
m=0

(
µj + iεm
h̄ωc

) ∞∑
k=1

[e2π ik�j (εm+l ) − e2π ik�j (εm)]

}
. (34)

When |εm| > h̄ωc, the �j are small enough and we can neglect iεm in comparison with µj .
Expanding (34) up to the first order in exp (−π/ωcτj ) and summing the geometrical series,
we will have the results (30) and (31) in which δj should be changed as follows:

δj (T ) = 2 cos

(
2π

µj

h̄ωc

+ π

)
exp

(
− π

ωcτj

)
λ

sinh λ
(35)

λ = 2π2T

h̄ωc

. (36)

It follows that, in the first order in exp(−π/ωcτj ), the oscillations are damped out exponentially
as the temperature increases. This damping is due to the temperature spreading of the electron
distribution. It takes place when the temperature becomes larger than the energy distance
between Landau levels.

In second order in exp(−π/ωcτj ), one obtains the terms exp[2π i(�j (εm+l) + �j ′(εm))]
in (34). It is important that some of them do not contain εm. The period of these oscillations
in a reciprocal magnetic field is proportional to the energy distances between the subbands,
µj −µj ′ . These amplitudes are not thermally damped out. There are oscillation terms, which
become dominant as temperature increases. The expression for these non-damping terms has
the form

σ (nd)
xx =

M∑
j=1

Nje
2τj /m

[1 + (ωcτj )2]2

[
2τj
τjj

− 1 + (ωcτj )
2

(
1 − 6τj

τjj

)]

×
∑
j ′ 	=j

τj

τjj ′
2 cos

(
2π

µj − µj ′

h̄ωc

)
exp

[
− π

ωc

(
1

τj
+

1

τj ′

)]
(37)

σ (nd)
xy = −

M∑
j=1

ωcτj
Nje

2τj /m

1 + (ωcτj )2

{
1 +

2τj
τjj

3 − (ωcτj )
2

[1 + (ωcτj )2]2

}

×
∑
j ′ 	=j

τj

τjj ′
2 cos

(
2π

µj − µj ′

h̄ωc

)
exp

[
− π

ωc

(
1

τj
+

1

τj ′

)]
. (38)

Note that in reference [7], some mistakes were made in expanding in the small parameter
exp(−π/ωcτj ) and hence an incorrect result was obtained for σ (nd)

xx . The component σxy was
not calculated in reference [7].

The total expression for the conductivity, correct to exp(−2π/ωcτj )order, can be presented
as

σ = σ (0) + σ (1) + σ (2) + σ (nd)

where σ (0) and σ (1) are the non-oscillating and oscillating parts of (30) and (31) with δj
from (35), and σ (2) is the second-order correction in exp(−π/ωcτj ), damping out with
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temperature as 2λ/ sinh 2λ. At zero temperature, σ (2) and σ (nd) are much smaller than σ (1).
With increasing temperature, σ (1) andσ (2) decrease, and the latter more rapidly. For this reason,
σ (2) should be neglected in comparison with σ (1) at any temperature. Thus the conductivity
tensor is

σαβ = σ
(0)
αβ + σ

(1)
αβ + σ

(nd)
αβ (39)

where the sum of the first and second terms is defined by (30) and (31) with δj from (35), and
σ
(nd)
αβ is given by (37), (38).

Note that in the framework of the theory developed, the chemical potential was considered
to be fixed. However, it is possible to demonstrate that the expressions for σ (1)

αβ and σ
(nd)
αβ have

the same form in the case where the total carrier concentration is kept constant. The reason
is that the oscillation correction to the chemical potential at fixed concentration is small in the
parameter (h̄ωc/µ) exp(−π/ωcτ) and, besides, shows exponential temperature damping [7].

4. Discussion

For the sake of definiteness, we will consider the magnetoconductivity oscillations for two-
subband filling. Figure 1 and figure 2 demonstrate the magnetic field dependences of the
resistance:

ρxx = σxx

σ 2
xx + σ 2
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Figure 1. The temperature behaviour of
the Shubnikov–de Haas oscillations for
intense intersubband scattering, τ12 = 2τ1.
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Figure 2. The temperature behaviour of the Shubnikov–de Haas oscillations for weak intersubband
scattering, τ12 = 20τ1.

calculated at different temperatures with the help of (39). The parameters used are the
following: µ1τ1/h̄ = 50, µ2τ2/h̄ = 5, τ1 = τ2. We chose the filling of the excited
subband to be relatively small because this case is often found in experiments on multilevel
systems [15, 16]. Figure 1 presents the case of intense intersubband scattering (τ1/τ12 = 0.5)
and figure 2 corresponds to that of weak intersubband scattering (τ1/τ12 = 0.05).

According to (30) and (31), the peculiarity of the quasi-2D Shubnikov–de Haas effect
at low temperatures is as follows. For intense intersubband scattering, the oscillations
cos(2πµ2/h̄ωc) exist even at relatively small electron concentration in the excited subband
(see figure 1(a)). This is because the scattering probability from the ground subband oscillates
with two periods. Both low- and high-frequency harmonics are seen clearly (figure 1(a)). For
weak intersubband scattering (figure 2(a)), the low-frequency oscillations may arise due to
filling of the excited subband only and thus have relatively small amplitude (N2/N1 = 0.1).
The Shubnikov–de Haas effect at low temperature was studied experimentally by de Lange [6].
Both the oscillations cos(2πµ1/h̄ωc) and cos(2πµ2/h̄ωc) were observed in accordance with
our calculations at T = 0.

The other peculiarity of the quasi-2D system is the existence of oscillations which are
not damped out thermally. These oscillations are of order exp(−2π/ωcτ) and therefore are
not observed at low temperatures. According to equation (35), the amplitudes of the main
harmonics, σ (1) (and hence the oscillation amplitudes of σ ) decrease while the temperature
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increases from zero to T = TD (see figure 1(b)). Here

TD = h̄

2πτ1

is the Dingle temperature. As the temperature increases further (figures 1(c), 1(d)), the
amplitudes of the ρxx-oscillations reduce non-exponentially. This indicates that there are
terms, σ (nd), which are not damped out thermally. As seen from figure 1(c), the amplitudes
σ (1) and σ (nd) are comparable at T = 2 TD . Since the excited subband is not filled much,
the frequencies corresponding to the ground subband and the differential one differ by only
10% (µ2/µ1 = 0.1). Therefore a new effect, beats of the magnetoconductivity, appears
(figure 1(c)). At T = 3 TD (figure 1(d)), σ (nd) dominates, and hence the amplitudes and the
shape of the magnetoresistance do not change as the temperature increases further.

If the intersubband scattering is weak, the role of the excited subband is not significant at
zero temperature (figure 2(a)). With increasing temperature, this role is substantially enhanced,
but the enhancement takes place at higher temperatures than in the case of intense intersubband
scattering. The beats arise at T = 3 TD (see figure 2(b)) for the parameter set listed above.
At higher temperatures, the contribution σ (nd) begins to dominate and the oscillations σ (1)

manifest themselves at the stronger magnetic fields only, when the ratio

σ (nd)

σ (1)
∼ τ1

τ12

TD

2πT
exp

[
π

ωcτ1

(
T

TD
− 1

)]

becomes of the order of unity. For instance, at T = 4 TD , σ (1) starts to play a significant role
at ωcτ1 > 1.3 (figure 2(c)). At T = 5 TD , σ (nd) dominates over the whole range of magnetic
fields shown (figure 2(d)).

Experimentally, the temperature dependence of the magneto-oscillations was studied in
references [4, 5, 16]. These results agree qualitatively with the calculations given. The
results [16] agree better with figure 2 than figure 1. This implies that the intersubband scattering
was weak in the samples investigated. Quantitatively this confirms the large—by more than
two orders of magnitude—reduction of the oscillation amplitude, which can take place only
when the ratio τ1/τ12 is small (see (37), (38)).

5. Conclusions

In this paper, the general theory of the magneto-oscillation effects was developed for quasi-
2D semiconductor systems. The magnetoresistance tensor has been calculated for arbitrary
number of occupied size-quantized subbands. For the first time, the temperature dependence
of the Shubnikov–de Haas oscillations was analysed in detail. It is demonstrated that, at any
intensity of the intersubband scattering, this process is responsible for the magnetoconductivity
behaviour with increasing temperature. It was predicted that a new effect of emerging and
damping out of the magnetoconductivity beats occur in the case of relatively small filling of the
upper subband. The theory developed agrees qualitatively with available experimental data.
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Appendix A

To calculate the conductivity tensor, σαβ(ω), in a magnetic field we apply to the system an
external uniform electric field, E, parallel to the 2D plane. Let δA(t) be the vector potential
of this field:

E = (−1/c) ∂ δA/∂t.

The relationship between the Fourier transforms of the current density, j(ω), and the electric
field has the form

jα(ω) = iω

c
σαβ(ω) δAβ(ω). (A.1)

On the other hand, the current density may be directly expressed through the exact Green
function

j(r, t) =
{

ie

2m
[p(r′) − p(r)] +

ie2

mc
(A(r) + δA(t))

}
r′→r

G̃(r, t; r′, t + 0) (A.2)

where A(r) is a vector potential of the homogeneous magnetic field, p = −i ∇ is the
momentum operator, and G̃(r, t; r′, t ′) is the Green function in the field A + δA. Expanding
G̃(r, t; r′, t ′) up to terms linear in δA, we get from (A.2) [12]

jα(r, t) = ie2

mc
G(r, t, r, t + 0) δAα(t) +

ie2

m2c

[
pα(r) − pα(r

′)
2

− e

c
Aα(r)

]
r′→r

×
∫

dt1

∫
dr1

[
pβ(r1) − pβ(r

′
1)

2
− e

c
Aβ(r1)

]
r′

1→r1

× G(r, t; r′
1, t1)G(r1, t1; r′, t)δAβ(t1) (A.3)

where G is the Green function in the field A. Passing to Fourier components (r, t) → (q, ω)

and taking into account (A.1), we obtain for q = 0

σαβ(ω) = iNe2

mω
δα,β +

e2

m2ω

∫ ∫
dr dr1

∫ ∞

−∞

dε

2π

[
pα(r) − pα(r

′)
2

− e

c
Aα(r)

]
r′→r

×
[
pβ(r1) − pβ(r

′
1)

2
− e

c
Aβ(r1)

]
r′

1→r1

Gε+h̄ω(r, r
′
1)Gε(r1, r

′). (A.4)

Here N is the total electron concentration (see (C.1)). Integrating (A.4) by parts, we get finally

σαβ(ω) = 1

ω

∫ ∫
dr dr1

∫ ∞

−∞

dε

2π
[Ĵα(r)Gε+h̄ω(r, r1)][Ĵβ(r1)Gε(r1, r)] +

iNe2

mω
δα,β

(A.5)

where the current-density operator is

Ĵ(r) = e

m

[
−ih̄∇ − e

c
A(r)

]
. (A.6)

Appendix B

To avoid the appearance of divergences in (27a) and (27c), the terms with k = 0 should be
integrated over ε first, as for a simple system in the absence of a magnetic field [12]. However,
in the case under study, the Green function contains the variable ε in the self-energy parts,
Xj(ε) (see (13)). To overcome this difficulty, we take it into account that

Xj(ε) = −sign ε
ih̄

2τj
[1 + γj (ε)] (B.1)



Magneto-oscillation effects in quasi-two-dimensional semiconductor structures 2529

where |γj (ε)| � 1 (see (16)). Since these parameters are small, the Green functions may be
expanded in the series

G
R,A
j (ε, ξ) = 1

ε − ξ ± ih̄/2τj
+

∞∑
l=1

(∓ih̄/2τj )l[γj (ε)]l

[ε − ξ ± ih̄/2τj ]l+1
. (B.2)

The first term depends on ε in a simple way. A product of two such terms in (27a) and (27c)
can be easily integrated over ε and then over ξ . If one passes in the expression obtained to the
limits µj/h̄ωc → ∞, µjτj/h̄ → ∞, then one gets the contribution

e2

2π ih̄2ω

M∑
j=1

µj . (B.3)

The rest of the terms in (27a) and (27c) contain the parts of equations (B.2) with l � 1.
In equation (27c), ε > 0, and the characteristic values of ξ are of the same order as ε. Hence
one can perform the integration over ξ over the whole real axis. Since the integrals contain
products of three or more Green functions with the same imaginary parts, they are equal to
zero according to the residue theorem.

The integrals (27a) can be conveniently transformed as follows:∫ −h̄ω

−∞
dε

∫ ∞

−µj

dξ =
∫ −h̄ω

−∞
dε

∫ ∞

−∞
dξ −

∫ −µj

−∞
dξ

∫ −h̄ω

−∞
dε. (B.4)

The first integral here is equal to zero according to the residue theorem. In the second one,
the characteristic ε ∼ ξ < −µj . Therefore one can extend the integration over ε to the whole
real axis. There are one or more factors γj (ε) in the integral. They depend on ε as follows:

γj (ε) ∼ exp(−2π isε/h̄ωc) (B.5)

where s is a positive integer (see (16)). Therefore one can close the integration path in the
lower half-plane of the complex variable ε. There, the functions (ε − ξ − ih̄/2τj )−(l+1) are
analytical. Hence these integrals are equal to zero as well.

Thus the terms with k = 0 in (27a) and (27c) give the contribution (B.3).

Appendix C

The electron concentration, N , may be expressed via the Green function [14]:

N = −i
∫

dr

∫ ∞

−∞

dε

2π
Gε(r, r)e

iε0. (C.1)

Representing the Green function in the form (5) and making use of the Poisson summation
formula (10), one gets from equation (C.1)

N = −i
m

2πh̄2

M∑
j=1

∞∑
k=−∞

∫ ∞

−µj

dξ
∫ ∞

−∞

dε

2π
exp

[
2π ik

(
µj + ξ

h̄ωc

− 1

2

)]
Gj(ε, ξ)e

iε0. (C.2)

Expanding Gj(ε, ξ) in the series (B.2) and detaching in (C.2) the term with k = 0, one can
express the concentration as a sum of three groups of integrals:

N = −i
m

2πh̄2

M∑
j=1

∫ ∞

−∞

dε

2π

{∫ ∞

−µj

dξ
eiε0

ε − ξ + (ih̄/2τj ) sign ε

+
∞∑
l=1

∫ ∞

−∞
dξ

(−ih̄/2τj )l(sign ε)l[γj (ε)]l

[ε − ξ + (ih̄/2τj ) sign ε]l+1

+
∑
k 	=0

∫ ∞

−∞
dξ exp

[
2π ik

(
µj + ξ

h̄ωc

− 1

2

)]/
(ε − ξ − Xj(ε))

}
. (C.3)
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The second group of integrals here is equal to zero according to the residue theorem.
Calculating the rest, we get

N = m

2πh̄2

M∑
j=1

{∫ ∞

−µj

dξ
eiξ0

π

[
π

2
− arctan(2ξτj /h̄)

]
−

∞∑
k=1

∫ ∞

−∞
dε sign ε e2π ikFj (ε)

}
. (C.4)

In the limitµjτj/h̄ → ∞, the first integral is equal toµj , and the second one may be presented
as

h̄ωc

∞∑
s=1

As exp(−πs/ωcτj )

where |As | < 1. The explicit form of the coefficients As , oscillating in a magnetic field, may
be obtained by solving the Dyson equation (13). However, it is clear that at h̄ωc � µj this
contribution to the concentration is small. Therefore the concentration remains constant in this
range of magnetic field:

N = m

2πh̄2

M∑
j=1

µj . (C.5)
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